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Introduction Our Algorithm Probabllistic Guarantee

Run the following algorithm for di erent values o2 (0; 1):

Graph CIUSterlng_ | From C form the \Ideal Cluster" adjacency matrik
Partitioning nodes of an unweighted graph into clusters st Algorithm 1 (Graph Cluster)Find K ;B , the optimum of the Flip each entry with probability to getA (disagreements)

{ Nodes of each cluster are highly connectea following convex optimization program Observe each entry 8f with probability pg
{ Nodes of di erent clusters are poorly connected e (1 KKKk + KBk,
Subjectto: P (K +B)=P _(A+1) Theorem 3. For the class of graphs explained above, Algorithm i
. outputs aVALIDclustering with high probability provided that

f © is VALID P J Jh Probagiity b

Output the clustering corresponding td@ . 1 nlog'(n)

Otherwise declare \Failure", < 3 and Kmin(Q ¢ o

VALI D CIUStenng Constant fraction of disagreements regardless of thef sikesters
A0 1 symmetric matrix® is calledVALIDIf its eigenvectors have disjoint support.

Vanishing observationgp _ I 0 provided thatk min(C) = ( pﬁlogz(n))

2 3 1 11 1 1

A E Remarks

Both guarantees require the disagreements not to be coateenin some part of the

CIUStering Criterion graph; rather be distributed.

Minimize the total number of disagreement edges [1]: Unlike the deterministic guarantee, disagreements &ramd unobserved entries (erz
{ Edges between the nodes from di erent clusters sures) are treated di erently for the probabllistic guaean

{ Missing Edges between the nodes of a single cluster

Pros: No Pre-speci cation of the number of clusters D|Sag reement M|n|m |Zat|0n

Cons: NP-Hard Problem

Simulation Results

Theorem 1. If ® _ is VALIDfor some o 2 (0;1), then the corre-
sponding clustering Is the disagreement minimizer Disagreement vs. Minimum Size Cluster Disagreement vimiinSize Cluster

All we need is to nd a value of that yields a valid clustering. This can be done v
bisection search.

Our paper: a new method for optimal clustering under natural additional
assumptions. Proof. Two key ingredients:

If K iIsVALIDthenkKk =n
Bj 2f 1,01g =) k Bky= kBkg . T
Algorithm 1 becomes T P e @ R P e o

Minimize: kB Ko Probability of success for 1000 nodes graph Probability of Success for 1000 nodes graph
Subjectto: P E)bS(K +B)=P _(A+1) with equal size clusters with variable size clusters
K i1sVALID

\I d e al C I u Ste rS" + \D | Sag re e m e ntS" Observation Probabilitygp) vs. Cluster Size Observation Probabilipg)(vs. Disagreement Probability )(

Number of Disagreements per node

Deterministic Guarantee

di C = #Disagreements between nodand clustelcj ) )
Probability of Success for 400 nodes graph Probability of Success for 400 nodes graph

All unobserved edges are disagreements with probability of disagreement= 0:04 with equal cluster size 60

Dmax(C) = maxi; minGij;j(J:(i)j)

Kmin(©) := min; |Cj)

Theorem 2. Algorithm 1 outputs a VALIDclustering provided that References
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